Ir para o conteúdo

Sobre

Cálculo o seguinte limite: \displaystyle\lim_{x\to 0} \sqrt[3]{x^4+2}

Temos que o seguinte limite é resolvido assim: $$ \displaystyle\lim_{x\to 0} \sqrt[3]{x^4+2} $$

Fazendo x\to 0 substituindo na expressão algébrica, temos

= \displaystyle\sqrt[3]{(0)^4+2} = \sqrt[3]{0+2}
= \sqrt[3]{2}
  • Improved search result grouping (pages + headings)
  • Improved search result relevance and scoring
  • Display of missing query terms in search results
  • Improved search result summaries
  • ... more to come

The HTML specification is maintained by the W3C.

*[HTML]: Hyper Text Markup Language

*[W3C]: World Wide Web Consortium

Note

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Nulla et euismod nulla. Curabitur feugiat, tortor non consequat finibus, justo purus auctor massa, nec semper lorem quam in massa.

Phasellus posuere in sem ut cursus

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Nulla et euismod nulla. Curabitur feugiat, tortor non consequat finibus, justo purus auctor massa, nec semper lorem quam in massa.

!!! note "" Lorem ipsum dolor sit amet, consectetur adipiscing elit. Nulla et euismod nulla. Curabitur feugiat, tortor non consequat finibus, justo purus auctor massa, nec semper lorem quam in massa.

Note

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Nulla et euismod nulla. Curabitur feugiat, tortor non consequat finibus, justo purus auctor massa, nec semper lorem quam in massa.

Note

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Nulla et euismod nulla. Curabitur feugiat, tortor non consequat finibus, justo purus auctor massa, nec semper lorem quam in massa.

abstract, summary, tldr

info, todo

success, check, done

question, help, faq

warning, caution, attention

failure, fail, missing

danger, error

bug

example

quote, cite

Pied Piper

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Nulla et euismod nulla. Curabitur feugiat, tortor non consequat finibus, justo purus auctor massa, nec semper lorem quam in massa.

https://squidfunk.github.io/mkdocs-material/reference/admonitions/

Subscribe to our mailing list

Subscribe to our mailing list

Submit

Example

Example:

* Sed sagittis eleifend rutrum
* Donec vitae suscipit est
* Nulla tempor lobortis orci

Result:

  • Sed sagittis eleifend rutrum
  • Donec vitae suscipit est
  • Nulla tempor lobortis orci

Example:

1. Sed sagittis eleifend rutrum
2. Donec vitae suscipit est
3. Nulla tempor lobortis orci

Result:

  1. Sed sagittis eleifend rutrum
  2. Donec vitae suscipit est
  3. Nulla tempor lobortis orci
Method Description
GET Fetch resource
PUT Update resource
DELETE Delete resource
Method Description
GET Fetch resource
PUT Update resource
DELETE Delete resource

Text can be {​--deleted--} and replacement text {​++added++}. This can also be combined into {​one~>a single} operation. {​Highlighting} is also possible {​>>and comments can be added inline<<}.

{​== Formatting can also be applied to blocks, by putting the opening and closing tags on separate lines and adding new lines between the tags and the content. ==}

  • This was marked
  • This was inserted
  • This was deleted

😄

  • – Medium
  • – Twitter
  • – Facebook

Placeholder

Placeholder

Image caption

Placeholder

\operatorname{ker} f=\{g\in G:f(g)=e_{H}\}{\mbox{.}}

The homomorphism f is injective if and only if its kernel is only the singleton set e_G, because otherwise \exists a,b\in G with a\neq b such that f(a)=f(b).

Welcome to disponha!

https://squidfunk.github.io/mkdocs-material/reference/variables/

The unit price is 22.48